
SCHOOL OF -
ENGINEERING
& APPLIED SCIENCE

A Final Report
Grant No. 5555-25

July 5,1993 - September 30,1996

HIGH PERFORMANCE DATABASES FOR
SCIENTIFIC APPLICATIONS

Submitted to:

CESDIS
Code 930.5

Goddard Space Flight Center
Greenbelt, MD 20771

Attention: Ms. Nancy Campbell

Submitted by:

James C. French
Research Assistant Professor

Andrew S. Grimshaw
Associate Professor

SEAS Report No. UVA/52848l/CS97/101
March 1997

DEPARTMENT OF COMPUTER SCIENCE

University of Virginia
Thornton Hall
Charlottesville, VA 22903

UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia’s School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,500 students with a graduate enrollment of approximately 600. There are
160 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties.
These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and
Aerospace to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems
Engineering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics
and Computer Science. Within these disciplines there are well equipped laboratories for conducting
highly specialized research. All departments offer the doctorate; Biomedical and Materials Science grant
only graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time student
enrollment of about 17,000), also offers professional degrees under the schools of Architecture, Law,
Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts
and Sciences houses departments of Mathematics, Phyics, Chemistry and others relevant to the
engineering research program. The School of Engineering and Applied Science is an integral part of this
University community which provides opportunities for interdisciplinary work in pursuit of the basic goals
of education, research, and public service.

High Performance Databases for Scientific Applications

CESDIS Final Report
July 1993 - September 1996

James C. French
Andrew S. Grimshaw

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

1. Highlights
During the first two years of funding we completed our work on high performance

parallel YO support for multidimensional range searches. This work is described more
fully in [KARP94a, KAw94b, KARP94c, KAw94d, KAw94el. In addition we began
shifting our work in a new direction, file system support in high performance metasys-
tems [GRIM94a, GRIM94b, GRIM951. These two topics are discussed separately in greater
detail below. To summarize, our main achievements in multidimensional range search-
ing are as follows:

We developed a general approach for attacking the high-performance YO
problem.

We developed a parallel file object based on PLOP files designed to provide
high-performance range queries in multiple dimensions.

We tested the performance of range retrievals on representative queries provided
to us by the National Radio Astronomy Observatory.

During the final year of funding we directed our work on high performance parallel
I/O to file system support in high performance metasystems
[GRIM94a, GRIM94b, GFUM~~] . This topic is discussed in greater detail below. Our main
achievement over the period was the further development of the Campus Wide Virtual
Computer (CWVC) deployed here at the University of Virginia. The campus-wide vir-
tual computer is a prototype for the nationwide Legion system in that the computational
resources at the University are operated by many different departments; sharing of
resources is currently rare; resources are owned by the departments, and this equipment
is used for "production" applications during the day.

Even though the CWVC is much smaller, and the components much closer together,
than in the envisioned nationwide Legion, it still presents many of the same challenges.
The processors are heterogeneous, the interconnection network is irregular with orders of
magnitude differences in bandwidth and latency, and the machines are currently in use
for on-site applications that must not be negatively impacted. Each department operates

essentially as an island of service, with its own NFS mount structure, and trusting only
machines in the island.

The next section describes our work with multidimensional range searching. It is
followed by an overview of Legion, our ongoing metasystems project and a discussion of
our I/O work.

I

2. High Performance Parallel YO Support for Multidimensional Range Searches
We have developed a general approach for attacking the high performance I/O

problem, namely the Extensible File Systems (ELFS) approach based on work in
[GRIMgl]. This report describes an implementation following the ELFS approach for a
specific class of retrieval patterns, multidimensional range searches. Multidimensional
range searches appear in a wide range of applications, including many scientific applica-

.tions. Such applications view a data set as an n-dimensional data space, where each
dimension.tepresents the values along a key field present in the data. The coordinates of
each data record are its values for each of the n dimensions. Using this view, subvolumes
of the data space can be defined by specifying a range of values for each dimension. For
example, a data set containing a set of time indexed two dimensional images can be
viewed as a three-dimensional data space (time,x,y). Possible range searches for such a
data set include retrieving a specified region of each image (a rectangle in (x ,y)) for all
time values, retrieving full images for a certain range of times, etc.

In the following sections we first present the current methods used for providing
range search capabilities and then briefly describe the general ELFS approach and its
benefits. This is followed by a discussion of an instance of this approach designed for
high performance multidimensional range searches including details of the parallel struc-
ture of the implementation. We also describe the tests we executed using interferometry
data sets from the National Radio Astronomy Observatory (NRAO). More details on
these tests can be found in [KARP94a, K A R P ~ ~ c , KARP94d, KARP94eI.

2.1. Current Methods
There are several approaches typically employed to provide range searching capa-

bilities on a set of data, each with varying degrees of implementation effort and perfor-
mance. Many implementations store the data sets as simple sorted sequential files and
scan the file, filtering out unwanted data outside of the desired subvolume. This approach
is easy to implement, but performs poorly, especially when small amounts of data are
desired relative to the file size. An improvement to this scheme uses an indexed, sorted
file, to reduce the number of accesses needed to the file, improving performance at a
modest complexity cost. This scheme works well for a one-dimensional space (for the
sorted, indexed key), but does not generally perform well for multidimensional accesses.
Some implementations designed for parallel applications, improve the performance of a
single file by either replicating the data sets or partitioning the data set into separate dis-
joint sets. Each of these approaches is designed to alleviate the contention for the single
file resource among multiple concurrent processes, but does not improve upon the basic
access methods for each distributed file.

Another common approach is to use a commercial database management system
(DBMS)
ticularly

~~

which allows forthe specification of range queries. Relational DBMS are par-
popular where range searches are easily defined using the Structured Query

2

I

Language (SQL). This approach is easy from the implementation standpoint, but may not
achieve acceptable performance. DBMS are built to support a wide range of possible
access patterns and types of data and are not tuned to range searching in multiple dimen-
sions. In addition, DBMS incur overhead for the guarantee of consistency within the
database, which may not be an issue for many applications.

A less often used approach implements file structures specifically tailored for range
searching such as PLOP files[KRIE88a, KRIE88b1, grid files [NIEV84], k-d & k-d-b trees
[BENT79, RoB18 11, or quadtrees [SAME84]. These file structures offer performance
advantages by attempting to preserve physical data locality in all of the dimensions of the
data space and by providing efficient methods for finding particular regions of the data
space. The drawback is that these file structures can be difficult to implement properly,
especially in a distributed manner. Even when these structures are implemented, the
implementations are often highly application-specific and not reusable, so the common
practice is to build them virtually from scratch.

The ELFS Approach
The ELFS approach is to create file objects that satisfy four criteria:
Match the file structure to the access patterns of the application and the type of the
data. As the examples in the previous section point out, the organization and struc-
ture of the underlying file can greatly influence performance by reducing the
number of accesses required. For distributed file structures, effective data placement
can potentially improve performance by reducing latency. Therefore it is important
to match file structures with their use.
Use parallel and other advanced I/O techniques. In a file type-specific manner
exploit parallelism to overlap application computation with I/O requests to reduce
the effective latency of a request (i.e. the wait actually experienced after issuing a
request). For distributed file structures, true parallel access can be used to better
utilize the file system's bandwidth. Other UO-related functions, such as data conver-
sion and sorting, may be performed in parallel to speed the overall performance of
using stored data. Prefetching and caching are two other well-known performance-
oriented techniques that can be employed when applicable.
Improve the VO interface to application programs. There are two main reasons for
improving the file interface. Most importantly from a performance standpoint, is to
allow the user to convey useful information that can be exploited by the file object
implementation. For example, knowing the stride of accesses in a matrix file can be
exploited to effectively prefetch data, or knowing that the file will be used in a read
only fashion can allow the implementation to avoid potentially costly consistency
protocols. The second reason for improving the interface is to make file objects
easier to use by application programmers, reducing their programming burden.
Encapsulate the implementation details in file objects. This goal is aimed at increas-
ing the maintainability and reusability of the file objects. By using the objeci-
oriented paradigm for the file objects, application programmers can derive new file
objects from existing base objects and can then extend them and tailor them without
reimplementing much of the file object functionality.

3

1

I

I

A suite of extensible file objects can be developed using this methodology, each
performing best for a particular class of data types and access patterns. Application
designers can then choose the best file object for there purposes and extend or tailor the
file definition as needed, hopefully requiring only a modest amount of effort. Our early
design work in this area has been reported in [K A F G ~ ~ ~] .

2.3. Parallel File Objects for Multidimensional Range Searches
Using the ELFS approach we have created a parallel file object designed to provide

high performance for range queries in multiple dimensions. Our implementation uses the
PLOP file as the basic underlying file structure. Though other file structures could be
used for multidimensional range searches, it is our opinion that none of these candidates
is clearly superior to PLOP files, while PLOP files have a relatively straightforward
implementation. For a more in depth analysis of the choice of file structure see
[mRP94a]. A PLOP file views a data set as a multidimensional data space. The data
space is partitioned by splitting each dimension into a series of ranges called slices. The
intersection of a slice from each dimension defines one logical data bucket. Data points
are stored in the bucket that has corresponding values in each dimension. Therefore,
within a bucket, the data points exhibit spatial locality in all dimensions. A tree structure
for each dimension tracks the physical location of each bucket within the file, so that
each bucket can be accessed very efficiently. This structure allows retrievals to eliminate
parts of the file that do not correspond to values within the range search based on all
dimensions, while quickly accessing those parts that may contain valid data.

We first implemented a sequential version of the PLOP file based file object.
Though unable to take advantage of parallel techniques, this version exploits the struc-
ture of PLOP files to achieve efficient accesses. In addition to the obvious benefits of
using the tailor-made structure of the PLOP file, a subtle performance improving
enhancement was implemented for sorting by a key that is one of the dimensions.
Because the data points contained in each slice along a dimension are disjoint, the data in
each slice along the sort key can be sorted separately, and with each slice returned in
order. By sorting in smaller batches, the complexity of the sort is reduced from 0 (nlogn)
to 0 (n/plogn/p) in the ideal case (p = number of slices spanned by the request).

The parallel version is being implemented using Mentat [GFUM93c], an object-
oriented parallel processing system. The design of the parallel implementation includes
several significant changes from the sequential version. First, PLOP files have been
modified to accommodate distributed pieces. These pieces can be created and distributed
in three patterns: segmented (or partitioned) along a dimension, striped along a dimen-
sion, or blocked by some set of dimensions (e.g. using two dimensions each piece would
be a rectangular region). The distributed PLOP file allows not only parallel access to the
data, but also allows an application program to map processes to nodes near the data they
will require.

Second, parallel I/O workers have been added to access each distributed file piece
and a manager has been added to coordinate their activities. The workers asynchro-
nously handle all requests for data at their piece, including UO device access, data
conversion and, if possible, data sorting. Our initial design has only a single manager
process for all worker processes and clearly does not scale well for increased numbers of
application processes requiring data. We zlready plan to replace this design with a

4

I

scheme that will scale for increases in the number of application processes by enabling
the manager to replicate itself and assign different managers to different application
processes.

Third, the interface has been improved. A major improvement to the interface to
decouple the definition of a query request from the retrieval of the data. The idea is to
allow the user to specify a query ahead of the time the data will be used whenever possi-
ble, and to submit the query to be performed. The file object can asynchronously begin
buffering the request while the application continues to do useful work. When the appli-
cation actually wants the retrieved values, a call is made to ask for the data.

2.4. Performance Tests
To test our implementation, we have converted two interferometry data sets from

NRAO’s Very Large Array (VLA) radio antenna installation. The first file, a line spec-
trum file, is -50 megabytes and 126,092 records, while the second file, a continuum spec-
trum file, is -270 megabytes and contains 8,440,092 records. Initial results for the
sequential version have been very encouraging. The converted PLOP files utilize space
fairly efficiently, 79% and 66% for the line and continuum files respectively (efficiency is
calculated by comparing actual storage used for records versus the total storage allocated,
including overhead and fragmentation).

To test the performance of range retrievals, a set of twelve representative queries for
NRAO’s applications has been developed. Both files have been tested using these
queries for the sequential version, with impressive results. The parallel version will be
tested with the same suite of queries for various file distribution patterns and numbers of
file pieces. These results and a comparison of results across the various parameters can
be found in [KAW4a, KARP94c, KARP94d, KARP94eI.

3. Legion: File and Data Access

done within the Legion project. We describe that next.
Our work in file systems for high-performance heterogeneous metasystems is being

3.1. Legion
Legion will consist of workstations, vector supercomputers, and parallel supercom-

puters connected by local area networks, enterprise-wide networks, and the NII. The total
computation power of such an assembly of machines is enormous, approaching a
petaflop; this massive potential is, as yet, unrealized. These machines are currently tied
together in a loose confederation of shared communication resources used primarily to
support electronic mail, file transfer, and remote login. However, these resources could
be used to provide far more than just communication services; they have the potential to
provide a single, seamless, computational environment in which processor cycles, com-
munication, and data are all shared, and in which the workstation across the continent is
no less a resource than the one down the hall.

A Legion user has the illusion of a single, very powerful computer on her desk,
which is used to invoke an application on a data set. It is Legion’s responsibility to tran-
sparently schedule application components on processors, manage data transfer and coer-
cion, and provide communication and synchronization, while trying to minimize execu-
tion time via parallel execution of the application components. System boundaries will

5

be invisible, as will the location of data and the existence of faults.
The potential benefits of Legion are enormous: (1) more effective collaboration by

putting coworkers in the same virtual workplace; (2) higher application performance due
to parallel execution and exploitation of off-site resources; (3) improved access to data
and computational resources; (4) improved researcher and user productivity resulting
from more effective collaboration and better application performance; (5) increased
resource utilization; and (6) a considerably simpler programming environment for the
applications programmers. Indeed, it seems probable to us that the NII can reach its full
potential only with a Legion-like infrastructure.

Before the Legion vision can be realized, several technical challenges must be over-
come. These are software problems; the hardware challenges are being addressed and are
the enabling technologies that provide the opportunity. The software challenges revolve
around eight central themes: achieving high performance via parallelism, managing and
exploiting component heterogeneity, resource management, file and data access, fault-
tolerance, ease-of-use and user interfaces, protection and authentication, and exploitation
of high-performance communications protocols.

3.2. Objectives

Easy-to-use, seamless computational environment.
From our Legion vision we have distilled six primary design objectives:

Legion must mask the complexity of the hardware environment and the complexity
of communication and synchronization of parallel processing. Machine boundaries
should be invisible to users. Legion will provide both user and programmer with a
uniform interface to service. As much as possible, compilers, acting in concert with
run-time facilities, must manage the environment for the user.

Legion must support easy-to-use parallel processing with large degrees of parallel-
ism. This includes task and data parallelism and their combinations. Because of the
nature of the interconnection network, Legion must be latency tolerant. Further,
Legion must be capable of managing hundreds or thousands of processors. This
implies that the underlying computation model and programming paradigms must
be scalable.

One of the most significant obstacles to wide-area parallel processing is the lack of
a single name space for file and data access. The existing multitude of disjoint name
spaces makes writing applications that span sites extremely difficult. Therefore,
Legion must provide a single name space for persistent objects (files).

Because we cannot replace existing host operating systems, we cannot significantly
strengthen existing operating system protection and security mechanisms. How-
ever, we must ensure that existing mechanisms are not weakened by Legion.

Clearly Legion must accommodate heterogeneity, i.e., it must support interoperabil-
ity between heterogeneous components. In addition, Legion will be able to exploit
diverse hardware and data resources, executing subtasks of large applications on

High pegonnance via parallelism.

Single, persistent namespace.

Security for users and resource owners.

Manage and exploit resource heterogeneity.

6

different heterogeneous processors, and using heterogeneous data sources. Some
architectures are better than others at executing particular kinds of code, e.g., vec-
torizable codes. These affinities, and the costs of exploiting them, must be factored
into scheduling decisions and policies.

The noticeable impact of Legion on local resources must be small, particularly with
regard to interactive sessions. If users notice a significant performance penalty when
their site is attached to Legion, they will withdraw; an observed penalty must be
more than offset by the benefits of Legionnaire status.
We have the additional objective of demonstrating the effectiveness of wide-area

heterogeneous computing on serious applications drawn from a variety of application
domains, including "grand challenges," such as global climate modeling and the human
genome project, and from economically significant problem areas such as electrical
engineering and medicine.

Minimal impact on resource owner's local computation.

3.3. Approach
The principles of the object-oriented paradigm are the foundation for the construc-

tion of Legion; our goal will be exploitation of the paradigm's encapsulation and inheri-
tance properties. Use of an object-oriented foundation will render a variety of benefits,
including software reuse, fault containment, and reduction in complexity. The need for
the paradigm is particularly acute in a system as large and complex as Legion. Other
investigators have proposed constructing application libraries and applications for wide-
area parallel processing using only low-level message passing services such as those pro-
vided by PVM [SUND90] and P4 [BOYL~~] . Use of such tools requires the programmer
to address the full complexity of the environment; the difficult problems of managing
faults, scheduling, load balancing, etc., are likely to overwhelm all but the best program-
mers.

Objects, written in either an object-oriented language or other languages such as
HPF Fortran, will encapsulate their implementation, data structures, and parallelism, and
will interact with other objects via well-defined interfaces. In addition, they may also
have inherited timing, fault, persistence, priority, and protection characteristics. Natur-
ally these may be overloaded to provide different functionality on a class-by-class basis.

Our approach to constructing Legion is evolutionary rather than revolutionary. We
have begun by first constructing a Legion testbed by extending Mentat, an existing
object-oriented parallel processing system [GRIM93d]. Mentat attacks the problem of
providing easy-to-use high performance parallelism to users. Mentat has been used to
implement several real-world applications on hardware platforms spanning the
bandwidtMatenc y space in a heterogeneous environment
[GRIMWa, GRIM93b, GRIM93el. Mentat's object-oriented structure, and its ability to
achieve high-performance on platforms with very different communications characteris-
tics are !he key fxtors in our choice of Mentat as our implementation vehicle. The
testbed provides us with an ideal platform to rapidly prototype ideas, forcing the details
and hidden assumptions to be carefully examined, and exposing flaws in the ideas or in
the system components.

7

3.4. Filddata Access
File and data access is one of the most crucial issues for Legion, particularly with

respect to providing a seamless environment. Today, distributed file systems such as
NFS, Andrew, and Locus are commonplace in local area networks. The unified level of
service and the naming scheme that they present to their users make them one of the most
successful components of contemporary distributed systems. In Legion we intend to pro-
vide the same level of naming and access transparency provided in local area networks.
This cannot be accomplished either by directly extending current systems onto a national
scale, or by imposing a single file system for both local and Legion access. Instead we
propose to adopt a federated file system approach. The Legion file system will provide
naming, access, location, fault, and replication transparency. It will permit users (or
library writers) to extend the basic services provided by the file system in a clean and
consistent fashion via class derivation and file-object instantiation and manipulation.
The extensions that we intend to design and implement ourselves include application-
specific file objects designed to improve application performance by reducing observed
I/O latency.

Issues such as naming, location transparency, fault transparency, replication tran-
sparency, and migration have been addressed both in the literature [LEVY901 and in
several existing operational systems. Rather than duplicate those efforts we will build on
them and extend them into a larger context. The difficulty that arises when borrowing
from an existing system is that most of the systems do not have a scalable system archi-
tecture or flexible semantics, or they require the imposition of a unified file system
model, contrary to our federated file system goal. Therefore we will borrow ideas but not
implementations, looking more to combine the work of others with our own.

Although we will continue to refer to the Legion "file system," we intend to create a
persistent object space as has been proposed for distributed object management systems
[NIco93]. There are several other efforts in the distributed object literature with which
we share many goals, e g , SHORE [CARE941 and CORBA [MAN092,NIC093]. Legion
is distinguished from these efforts by the emphasis we place on performance - Legion
expects to provide a high performance computing environment and this goal is
paramount. To this end we will focus more on file system support than database support.

The model that we will employ is simple and driven by the observation that the
traditional distinction between files and other objects is somewhat of an anachronism.
Files really are objects - they happen to live on disk, as a consequence they are slower to
access, and they persist when the computer is turned off. We define a file-object as a
typed object with an interface. The interface can also define object properties such as its
persistence, fault, synchronization, and performance characteristics. Thus, not all files
need be the same, eliminating, for example, the need to provide Unix synchronization
semantics for all files even when many applications simply do not require those seman-
tics. Instead, the right semantics along many dimensions can be selected on a file-by-file
basis, and potentially changed at run-time.

3.5. Agenda
Our agenda consists of three stages: (1) the construction of a campus-wide virtual

computer at the University of Virginia, (2) packaging the campus-wide system for prel-
iminary experimentation and use by Legionnaires, and (3) expansion to a nationwide

8

demonstration system. Each of these three stages will build upon the previous.
Before any major project is undertaken, one must ask how to measure success. In

parallel processing, success is measured by application performance (speedup, elapsed
time) and the flexibility and ease of use of the tool. Other important metrics include
acceptance by the user community, fault-tolerance, cost per used MIP/FLOP, and
whether tasks can be performed that were not possible before (e+, run an application in
Virginia on data that resides at NASA-JPL, or collect and use data in real time from sen-
sors in orbit, but have that data look like any other "file").

Application performance will be measured for a variety of real-world applications,
as well as selected kernel codes and parallel processing benchmarks. The applications
will be drawn from a diverse set of disciplines: biology, physics, electrical engineering,
chemistry, economics, radio astronomy, and command and control. The applications will
possess different granularity characteristics, as well as different latency tolerances. It is
not our intent, however, to show that all applications will be capable of exploiting the
nationwide resources of Legion. Some applications, those with inherently small granular-
ity or that are latency intolerant, will remain best suited to local operation, e g , on a sin-
gle processor or on a single tightly-coupled parallel processor.
3.5.1. Construction of a Campus-Wide Virtual Computer (CWVC)

The campus-wide virtual computer is a direct extension of Mentat to a larger scale,
and is a prototype for the nationwide system in that the computational resources at the
University are operated by many different departments; sharing of resources is currently
rare; resources are owned by the departments, and this equipment is used for "produc-
tion" applications during the day.

Even though the CWVC is much smaller, and the components much closer together,
than in the envisioned nationwide Legion, it still presents many of the same challenges.
The processors are heterogeneous, the interconnection network is irregular with orders of
magnitude differences in bandwidth and latency, and the machines are currently in use
for on-site applications that must not be negatively impacted. Each department operates
essentially as an island of service, with its own NFS mount structure, and trusting only
machines in the island.

The CWVC is both a prototype and a demonstration project. The objectives are to:
demonstrate the usefulness of network-based, heterogeneous, parallel processing to
university computational science problems; provide a shared high-performance resource
for university researchers; provide a given level of service (as measured by turn-around
time) at reduced cost; and act as a testbed for the nationwide Legion.

The prototype consists of over sixty workstations and is now operational. In
[GRIM951 we present the performance of two production applications that we have used
to test the efficacy of our approach: complib, a biochemistry application that compares
DNA and protein sequences, and ATPG, an electrical engineering application that gen-
erates test patterns for VLSI circuits. The performance results are encouraging.

4. VO Status
We conclude this report with a summary of the YO status in the Legion project.

This section presents an overview of the current research initiatives related to file sys-
tems and YO in the Legion Metasystem [GRIM94b] project. Given the intended nation-

9

t

I

I

wide to world-wide scope of Legion, the system poses many new challenges in the area
of scalable I/O applications, but at the same time holds the promise of exciting new tools
for wide-area collaboration and large-scale information management and retrieval.

Legion is a distributed, object-oriented, virtual-machine based metasystem intended
to present a single, seamless computational environment to users and application
developers. A central part of the Legion environment is its single, persistent namespace.
Current research in the area of persistent objects in Legion is focused on three of dif-
ferent levels. These are:
(1) Design and implementation of the basic system functionality to support persistent

objects.
(2) Design and implementation of basic, useful, user-level persistent object classes.
(3) Development of applications to avail of the unique facilities supplied by Legion

persistent object classes.

4.1. System Support for Persistent Objects

some of the basic problems in supporting distributed persistent objects. These include:
Naming and Binding

Current research at the low-level Legion system implementation level is addressing

Central to the ability to support persistent objects is the need for a well defined con-
cept of the persistent object name-space. Legion objects have associated with them
system-wide unique identifiers, LUIDs. A distributed scheme utilizing Binding
Agent objects is employed to bind LUIDs to object addresses.

Another active research area is related to the placement and instantiation of per-
sistent objects in order to best utilize available resources.

Legion objects can be in one of two basic states h active or inactive. Active objects
have an associated thread of control and address space, while inactive objects are
dormant and have all needed state saved to stable store. Currently, the basic
mechanisms by which objects are moved between active and inactive status are
being developed. All object classes will support "Save" and "Restore" asynchronous
member functions which will be invoked by system scheduling and instantiation
objects. Class authors will be responsible for utilizing Legion supplied mechanisms
to save and restore user level object state, while system internal object state will be
saved and restored automatically.

Features such as persistent object migration and object replication are also impor-
tant goals of the Legion persistent object model. While such features will be under
the control of persistent object class authors, the needed system support to elegantly
utilize these mechanisms are currenriy being investigated and deveioped.

Persistent Object Creation and Scheduling

Object States

Advanced Features

4.2. Basic User Level Persistent Object Classes
While the central core of the Legion system will provide the ability to develop per-

sistent object classes, the system will be of little use unless an existing base of useful,

10

user-level persistent object classes is also provided. Among the most important of these
are:

File Objects - The basic staple of information-based applications is the file. While
the Legion system will not prescribe any limited set of file objects, it will provide a use-
ful set of basic file classes. The most basic among these is the currently implemented
"Byte Vector" object class - an unstructured vector of bytes supporting a set of member
functions similar in ,functionality to Unix standard library file manipulation system calls.
Along with the byte vector object class, utility programs such as "legion cat" have been
developed to demonstrate the basic functionality of location independent, distributed
files. Other more complex application utilizing basic Legion "Byte Vector" objects are
described below.

Context Objects - While the Legion LUID naming scheme addresses the basic
issues of object naming and binding, it does not directly address the basic needs of
name-space "navigation" mechanisms - the ability to explore the name space, create logi-
cal links between objects, and map human-user comprehensible string names to system
readable LUIDS. This role will be played by "Context" object classes. These objects, at
the highest level, will provide a mapping between user-level string names and system-
level LUIDs. They will also provide mechanisms to create links between contexts, build-
ing a graph of object directories. Well constructed context objects will provide the basis
for structuring the Legion namespace at the level of user comprehensible meaning.

4.3. Applications Utilizing Persistent Objects
In order to demonstrate the utility of Legion persistent objects, as well as to drive

the further development and refinement of the Legion object model, a number of applica-
tions are currently being updated to utilize Legion file facilities. Some of these include:

Text Editing / Word Processing. The ability to collaborate on documents con-
veniently in a wide-area distributed environment will be one of the basic benefits of
Legion. Of the basic applications to support in this domain, text editing and word pro-
cessing are among the most obvious candidates. Versions of the standard unix vi and
emacs word processors have been updated to utilize Legion files. These have been
demonstrated in truly wide-area (cross country) environments. Currently, an add-on
module for the FrameMaker word processing system is being developed to allow Frame
users to transparently manipulate files in Legion space.

Distributed Sofhvare Development. Another potential area being investigated is dis-
tributed software project control. The ability to effectively collaborate on software
development projects is a natural application of the Legion persistent object facility. The
problem of developing a source code control / configuration management system utiliz-
ing Legion file objects is currently being investigated.

Distributed Simulation. The use of distributed simulations in military and commer-
cial applications is wide spread and growing consistently. The application of the Legion
persistent object space to distributed simuiation is an area of active research in the group.
A recent paper examining this potential application of the system is [FERR95].

. I

11

References:

[B ENT791

[B o Y L ~ ~]

[CARE941

[ERR%]

 GRIM^ 1)

[GRIM93a]

J. L. Bentley and J. H. Friedman, “Data Structures for Range Searching”,
ACM Computing Surveys I I , 4 (Dec. 1979), 397-409.

J. Boyle et al., Portable Programs for Parallel Processors, Holt, Rinehart
and Winston, New York, 1987.

M. J. Carey et al., “Shoring Up Persistent Applications”, SZGMOD 1994,

A. J. Ferrari, “Distributed Interactive Simulation in the Legion System”,
ELECSIM 199.5, Electronic Conference, 1995.
e ftp:/,tp. cs. virginia.edu/pub/afljAegion-dis.ps>.

A. S. Grimshaw and E. C. Loyot, Jr., “ELFS: Object-Oriented Extensible
File Systems”, Tech. Rep. CS-91-14, Dept. of Computer Science, University
of Virginia, July 1991.

A. S. Grimshaw, W. T. Strayer and P. Narayan, “Dynamic Object-Oriented
Parallel Processing”, ZEEE Parallel & Distributed Technology: Systems &
Applications, May 1993,33-47.

1994,383-394.

[GRIM93b] A. S. Grimshaw, E. A. West and W. R. Pearson, “No Pain and Gain! -
Experiences with Mentat on Biological Application”, Concurrency:
Practice & Experience 5 , 4 (June 1993), 309-328.

[GRIM93c] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with
Mentat”, ZEEE Computer, May 1993,39-51.

[GRIM93d] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with
Mentat”, ZEEE Computer, May 1993,39-5 1 .

[GRIMWe] A. S. Grimshaw, J. B. Weissman and W. T. Strayer, “Portable Run-Time
Support for Dynamic Object-Oriented Parallel Processing”, submitted to
ACM Transactions on Computer Systems, July 1993.

[GRIMWa] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver and P. F. R. Jr.,
“A Synopsis of the Legion Project”, Tech. Rep. CS-94-20, Dept. of
Computer Science, University of Virginia, Charlottesville, VA, June 1994.

[GRIM94b] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver and P. F. R. Jr.,
“Legion: The Next Logical Step Toward a Nationwide Virtual Computer”,
Tech. Rep. CS-94-21, Dept. of Computer Science, University of Virginia,
Charlottesville, VA, June 1994.

A. S. Grimshaw, A. Nguyen-Tuong and W. A. Wulf, “Campus-Wide
Computing: Early Results Using Legion at The University of Virginia”,
Tech. Rep. CS-95- 19, Dept. of Computer Science, University of Virginia,
Charlottesville, VA, March 1995.

[GRIM951

12

[KAR@4a] J. F. Karpovich, A. S. Grimshaw and J. C. French, “Breaking the YO
Bottleneck at the National Radio Astronomy Observatory (NRAO)” , Tech.
Rep. (3-94-37 , Dept. of Computer Science, University of Virginia,
Charlottesville, VA, August 1994.

[KARP94b] J. F. Karpovich, A. S. Grirnshaw and J. C. French, “Extensible File Systems
(ELFS): An Object-Oriented Approach to High Performance File UO”,
Proc. OOPSLA ’94: Object-Oriented Programming Systems and Languages,
1994, 19 1-204.

[KARP%c] J. F. Karpovich, A. S. Grimshaw and J. C. French, “Extensible File Systems
(ELFS): An Object-Oriented Approach to High Performance File YO”,
Tech. Rep. CS-94-28 , Dept. of Computer Science, University of Virginia,
Charlottesville, VA, July 1994.

[KARP94d] J. F. Karpovich, J. C. French and A. S. Grimshaw, “High Performance
Access to Radio Astronomy Data: A Case Study”, Tech. Rep. CS-94-25 ,
Dept. of Computer Science, University of Virginia, Charlottesville, VA, July
1994.

[KARP%e] J. F. Karpovich, J. C. French and A. S. Grimshaw, “High Performance
Access to Radio Astronomy Data: A Case Study”, Proc. 7th Inter.
Conference on Scientijic and Statistical Database Management, Oct. 1994,
240-249.

[KRIE88a] H. Kriegel and B. Seeger, “Techniques for Design and Implementation of
Efficient Spatial Access Methods”, Proc. of the Z4th VLDB, 1988,360-370.

[KRIE88b] H. Kriegel and B. Seeger, “PLOP-Hashing: A Grid File without a
Directory”, Proc. of the Fourth Inter. Conf on Data Engineering, Feb.
1988,369-376.

[LEVY901 E. Levy and A. Silberschatz, “Distributed File Systems: Concepts and
Examples”, ACM Computing Surveys 22,4 (December 1990), ,321-374.

[MAN0921 F. Manola, S. Heiler, D. Georgakopoulos, M. Hornick and M. Brodie,
“Distributed Object Management”, International Journal of Intelligent and
Cooperative Information Systems I , 1 (June 1992).

[NIco93] J. R. Nicol, C. T. Wilkes and F. A. ,Manola, “Object-Orientation in
Heterogeneous Distributed Systems’ ’, ZEEE Computer 26, 6 (June 1993),
57-67.

[NIEV84] J. Nievergelt and H. Hinterberger, “The Grid File: An Adaptable,
Symmetric Multikey File Structure”, ACM Transactions on Database
Systems 9, 1 (Mar. 1984), 38-7 1.

[ROB1811 J. T. Robinson, “The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes”, Proc. of the Annual Meeting of the
ACM Special Interest Group on Management of Data, 1981, 10-18.

13

[SAME841 H. Sarnet, “The Quadtree and Related Hierarchical Data Structures”, ACM
Computing Surveys 16 ,2 (June 1984), 187-260.

[SUND90] V. S. Sunderam, “PVM: A framework for parallel distributed computing”,
Concurrency: Practice and Experience 2 , 4 (December 1990), 3 15-339.

14

DISTRIBUTION LIST

1 - 3

4-5

6

7-8

*

9

CESDIS
Code 930.5
Goddard Space Flight Center
Greenbelt, MD 20771

Attention: Ms. Nancy Campbell

J. C. French

A. S. Grimshaw

M. Rodeffer, Clark Hall

SEAS Postaward Research Administration

SEAS Preaward Research Administration

*Cover Letter

J0#7 5 25 : ph

NASA
Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipienls Catalog No.

University of Virginia
P.O. Box 9003
Charlottesville, VA 22906

4. Title and Subtitle
High Performance Databases For

Scientific Applications

7. Author(s)
James French

9. Performing Organization Name and Address

USRA subcontract No. 5555-25

5. Report Date

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA Goddard Space Flight Center
Greenbelt, MD 20771

13. Type of Report and Period Covered
July 1993 - September 1996

Final

14. Sponsoring Agency Code I

The approach for ELFS solution consists of language and run-time system support that permits the
specification o a hierarchy of file classes.

I

I

15. Supplementary Notes
This work was performed under a subcontract issued by

Universities Space Research Association
10227 Wincopin Circle, Suite 212
Columbia, MD 21 044 Task 18

21. No. of Pages
1

16. Abstract

The goal for this task is to develop an Extensible File System (ELFS). ELFS attacks the problem of
the following:
1. Providing high bandwidth performance architectures
2. Reducing the cognitive burden faced by applications programmers when they attempt to optimize

3. Seamlessly managing the proliferation of data formats and architectural differences
their I/O operations to fit existing file system models; and

22. Price

17. Key Words (Suggested by Author(s))

extensible file system

20. Security Classif. (of this page) 1 Unclassified I Unclassified
19. Security Classif. (of tinis report)

18. Distribution Statement

Unclassified--Unlimited

NASA Form 1626 Oct 86

